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An asymptotic theory of clad inhomogeneous planar 
waveguides: I. Eigenfunctions and the eigenvalue equation 

J M Arnold 
Department of Electrical and Electronic Engineering, University of Nottingham, 
University Park, Nottingham, NG7 2RD, UK 

Received 24 January 1980 

Abstract. Asymptotic representations are obtained for the eigenfunctions of the differential 
equation describing scalar waves in a clad inhomogeneous planar waveguide, which has two 
turning points and finite boundaries. These representations are valid to all asymptotic 
orders in the large parameter, which is proportional to wavenumber. This is achieved, in 
contrast to augmented WKB theory, by finding transformations on the independent 
variable which map the eigenfunction exactly into known solutions of canonical differential 
equations. The resulting transformation equations are nonlinear but have tractable 
asymptotic properties. 

1. Introduction 

The analysis of the propagation of light in a clad dielectric waveguide is currently an 
area of much activity. From the practical point of view, these guiding structures are of 
great importance in modern high-capacity communications systems, and from the 
theoretical point of view, they present features of interest not previously encountered, 
or of no fundamental significance, in more traditional forms of waveguides. Amongst 
these features, the most prominent results from the multimode nature of these guides 
and the attendant problem of pulse dispersion due to the different group velocity of 
each mode. A realistic assessment of this phenomenon requires, amongst other things, 
a high degree of accuracy in calculating the group velocities across the mode spectrum. 

Originally, the WKB method was applied to this problem (Gloge and Marcatili 
1973), with some success. Unfortunately it is known that WKB is inaccurate, or fails 
completely, in certain circumstances. In the optical waveguide context these occur 
when caustics interact with dielectric boundaries or with each other. In such cases 
alternative methods must be sought. In addition, if one wishes to remain within the area 
of asymptotic methods, an alternative theory must be capable of generating several 
asymptotic orders of approximation in order to fulfil the accuracy requirement referred 
to previously. 

Recently, the present author considered the application of the uniform asymptotic 
theory of second-order differential equations with two turning points to a similar 
problem (Arnold 1980a, b), and equations were obtained from which the required 
parameters could be calculated in circumstances in which WKB fails. This work was 
based on the mathematical foundations laid down by Lynn and Keller (1970) and Olver 
(1975), along with a suitable ansatz to scale the required eigenvalue in such a manner as 
to render the calculations required more tractable. 

0305-4470/80/093057 + 25$01.50 @ 1980 The Institute of Physics 3057 
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In essence, the problem is to find the eigenvalue U’ of the differential equation 

d2+/dX2+(U2- V2f2)+=0 (1.1) 

d+/dx = *K+ x = * l  (1.2) 

when V -+ 00, subject to the boundary condition 

where K is some constant. (These equations are discussed in more detail in 5 2). The 
function f’ is assumed to be an even function of x ,  of polynomial form, such that 
U’ - V2f2 has only two zeros in -1 s x s 1 for U G V. The restriction to symmetry off  
is in no way essential, but it does simplify the analysis at certain points. 

The standard uniform approximation procedure consists of applying the Liouville 
transform 

to equation ( l . l ) ,  with 

f;= u2/v2. 
This brings (1.1) to the form 

d2@/dt2 + [ V2( 520 - 6’) + h]@ = 0 (1.6) 

where h is an analytic function of 5 in a non-vanishing neighbourhood of the real 5 axis, 
excluding the points at infinity. In addition, h is O( 1) as V .+ 00, and is given explicitly as 

These properties of h enable one to neglect it in (1.5) and to obtain 

cp-cD.0 (1.8) 

d2@o/dt2 + V2(&- [’)a, = 0. (1.9) 

where 

The parameter to is chosen by the requirement that E-+ 60 as x -+ x 2  and 5 -+ -to as 
x -+ xl, where x1 and x 2  are the two zeros of f 2  -f;. Thus 

CO x 2  

(6:- t2)”’ d t  = (f’ -f;)’/’ dx. (1.10) I, x 1  

Boundary conditions, obtained using (1.3), (1.4) and (1.8) in (1.2), are used to 
determine the correct solution of (1.9) (which is known to be a linear combination of 
Weber functions), and thus to obtain the parameter to. Equation (1.10) is then solved 
for f;, and the eigenvalue U’ follows trivially. 

In practice, this method has a number of disadvantages. Firstly, the resulting 
expressions are dependent only implicitly on the original variables x,  + and f. For 
example, the exact solution to (1.4) cannot in general be obtained with 6 expressed in 
the form of an explicit function of x (except in the trivial case f = x ,  when 5 = x). Further 
approximation needs to be applied to extract explicit expressions for the eigenvalue. 
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Secondly, higher-order terms are more difficult to deal with; because of the implicit 
nature of the Liouville transform, and hence of subsequent higher-order terms, it is 
prohibitively laborious to extract explicit approximations to higher order. This is a 
serious disadvantage in applications, in view of the accuracy required. 

Thirdly, the asymptotic expansion for #J obtained when higher-order terms are 
included is non-uniform as 1x1 + CO (Olver 1975). Although we wish only to consider 
1x1 s 1, this non-uniformity does have implications for the accuracy of asymptotic 
approximations. 

The theory to be described in this paper has the objective of remedying these 
defects. In particular, explicit representations for #J will be obtained which can be 
continued to all asymptotic orders of approximation, regarding the eigenvalue simply as 
a parameter to be determined. This is achieved by obtaining pairs of linearly 
independent asymptotic solutions to (1.1) which are valid over more restricted regions 
than the full uniform solution. These can be obtained explicitly to all orders (though not 
in a general closed form). A uniform approximation is then introduced for the specific 
purpose of normalising these approximate solutions to a single exact solution #J (or, 
equivalently, finding connection formulae for the normalisation constants). These 
asymptotic solutions resemble WKB solutions, with Airy function forms to span turning 
points. However, there is an important difference between the expressions obtained 
here and the more traditional methods. Previous methods (Lynn and Keller 1970, 
Olver 1975) proceed by applying a definite transformation to the independent variable, 
x, and then seeking to approximate the dependent variable, 4. Here, however, the roles 
are reversed: we pose the problem of finding a transformation on x which will transform 
#J into a function @ which is a known solution of a previously selected differential 
equation. In other words, what transformation, different from (1.4), will render h = 0 in 
(1.5)? This idea appears to have been originated by Miller and Good (1953). Berry and 
Mount (1972) give several references, but the basic idea has not been systematically 
exploited as is described here, nor has it been applied to eigenvalue problems on finite 
domains. Problems of this type require the determination of linearly independent pairs 
of solutions near boundaries which must be correctly normalised to a single global 
function 4, a requirement which greatly increases the complexity of such problems over 
those to which these methods were originally applied (in quantum chemistry). 

The resulting improvements in calculational effectiveness, best appreciated in actual 
application, are significant, removing all the defects of previous methods, and 
introducing a much greater flexibility to asymptotic methods. This flexibility is in part 
due to the explicit nature of the representations, extensible to all asymptotic orders, and 
partly due to the natural occurrence of contour integrals, in place of definite integrals in 
which the turning point is an integration limit. 

2. Formulation of the problem 

Suppose a planar waveguide is composed of an inhomogeneous medium of refractive 
index n ( x )  for - a  d x S a, surrounded by a homogeneous medium of refractive index 
n = nz. Scalar waves in such a medium are composed of modes of the form #J (x )  eipr, 
where #J satisfies 

d 2 # J / d ~ Z + ( ~ 2 k 2 - ~ 2 ) # J  = O  (2.1) 
where k is the free-space wavenumber, z is the direction of propagation, and it is 
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assumed that there is no variation in the y direction. By letting 

n’ = ni -  (n i -  n:)f2 (2.2) 
V’ = (n i -  n:)k2a2 ( 2 . 3 ~ )  

U’ = (nik2-  p’)a2 (2.3b) 

where f is a function of x such that f = 0 at x = 0, we obtain 

U’ d2Q/dXZ + ( U z  - Vzfz)+ = 0. 

d2Q/dX2 + ( U z  - V2f2)Q = 0. (2.5) 

d2Q/dX2- W2+ = 0 (2 .6)  

w2 v’- u2. (2.7) 

(2.8) 

(2.4) 

Units of length can be chosen so that a = 1. Then 

Equation (2.5) describes the field Q inside -1 S x s 1. Outside this region we have 

where 

Equation (2.7) has the elementary solution (bounded as 1x1 3 00) 

4 = *A e-wlxl 

where A is an arbitrary constant. Requiring that Q and dQ/dx be continuous at x = rtl 
leads to the boundary condition 

(1/Q) dQ/dx = * W x = *l .  (2.9) 
Thus the problem is to solve (2.5) on -1 S x S 1, subject to the boundary condition 
(2.9). 

These equations describe propagation in a planar optical waveguide when 
l(l/n’) dn’/dxl << 1. They also describe propagation in acoustic ducts and many other 
situations of physical interest. 

To make the refractive index n more definite we can assume that f is of polynomial 
form 

(2.10) 

where M is a finite integer. The {a j }  are chosen such that they are real, and so that 
U’ - V2f2 has only two zeros for - 1 S x S 1, U S V. This is a realistic restriction in 
most cases of practical interest. 

We will be particularly concerned with finding asymptotic approximations to Q and 
U’ when the parameter V becomes large. 

3. The transformations 

Let us first consider the differential equation from a general point of view. Let 

F2=fZ-fi ( 3 . 1 ~ )  

f i= u2/v2 (3.lb) 
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so that the differential equation (1.1) becomes 

d24/dX2- V2F2+ = 0. (3.2) 
This differential equation is characterised asymptotically (V  + 00) by points at which 

F2=0; these are known as caustics, or turning points. They divide the interval of 
interest (-1 6 x s 1) into disjoint regions where F 2  is alternately positive or negative. 
When F 2  < 0 solutions of (3.2) are oscillatory functions of x, and when F 2  > 0 they are 
smooth functions with exponential behaviour. Near caustics they must be described by 
transition functions. 

With this classification scheme in mind, we shall describe a class of transformations 
of (3.2), representatives of which generate asymptotic approximations to 4 to 
arbitrarily large order in the parameter V-2(V+co). In particular, we seek a 
transformation x + t, 4 + @ such that 

d2@/dt2 - V2G2@ = 0 (3.3) 
where G2 is any convenient function of t for which (3.3) has a known solution. It is 
easily verified by substitution that such a transformation is 

4 = (dt/dx)-*”@ ( 3 . 4 ~ )  

(3.4b) 

It is possible to regard such transformations as constituting a group (the group 
properties of closure, identity and inversion are easily established). The group property 
is important as it allows passage between different representations for 4, which is 
invariant under such transformations. 

Representatives of the transformation group form subgroups when the independent 
variables of differential equations of the form (3.2)-(3.3) are restricted to intervals 
which contain a definite number of turning points, this number being invariant under 
the transformation, and a consideration of the analytical representations of the 
transformation in various subgroups leads to asymptotic approximations €or 4, as we 
now show. In the following, 

I = { x :  - 1 S X S l )  and I’c I 

and the device will frequently be used of writing integrals of the form I“ h(x‘) dx’ as 
I” h dx’ when h has previously been defined as a function of x (thus it is implicitly 
required that x be replaced by x’ in the equations which define the integrand). 

3.1. I’ contains no turning points; F 2  > 0 for x E I’ 

In this case, we may take G2 = 1, since then (3.3) has a known solution 

@=Ale -V‘+A2eVr  (3.5) 
where A l  and A2  are arbitrary constants. It is convenient to choose a new variable, f 
say, and to reserve t for the general case; thus, with l=  t, and G2 = 1, we have 

( 3 . 6 ~ )  4 = (dl/dx)-”2(A1 e-v5 + A2 e”‘) 

(3.6b) 
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Equation (3.6b) is a nonlinear differential equation for 5. By letting 

w = d4'/dx (3.7) 
it becomes 

1 d2 
V2 dx 

w 2  = F2 __ w-1/2 

-F2+- - [ - ( - - dW2)  - (4;2 - - "d1;)2] V2 dx 4 w 2  dx 

which can be formally solved for V + CO by iteration: 

1 dF2 1 dF2  w2".F2+- [ - ( __ 2 __ ) - (4F2 __ __ dx)]+o(V-4) '  
V2 dx 4 F  dx 

( 3 . 8 ~ )  

(3.8b) 

(3.9) 

Equation (3.9) is an asymptotic approximation to w2;  higher-order terms are generated 
by continuing the iteration, and the resulting series is uniform wherever these 
subsequent terms are vanishingly small as V -$ CO. The form of (3.9) suggests that the 
series is not uniform at points where E 2  = 0. At such points all higher-order terms are 
singular, being more highly singular the higher the order of the term. 

The square root of (3.9) may be taken, to yield 

(3.10) 

Branches can be chosen for w and F such that they are positive when x is real, x E I ' ,  for 
sufficiently large V. In addition, w - " ~  is to be positive under the same conditions. 

It now remains to integrate w to obtain 5, as prescribed by (3.7). It is essential for 
later analysis to fix the arbitrary constant appearing in this integration, and this is done 
by the following argument. Suppose (3.10) is analytically continued into the complex 
x-plane; then, traversing a closed contour around a zero of F2 in the complex x-plane 
changes the sign of w. Hence, we may write 

l= i  J, w dx' (3.11) 

where r is a contour in the complex x'-plane starting at x' = x on the lower Riemann 
sheet of w and passing around the zero of F 2 ,  which is a branch point for w, to x' = x on 
the upper Riemann sheet ( x  is replaced by x'  as the integration variable) (Froman 1970). 
(See figure 1.) 

The question arises as to whether w can be analytically continued along r, as it has 
previously been defined only on the real x-axis. This in turn raises some difficult 
mathematical questions concerning the existence of solutions to (3.8) and their 
uniqueness, and in what sense the asymptotic approximation (3.10) represents the true 
solution. It is not particularly helpful to go into these questions here. It turns out that 
solutions of (3.8) do exist, and the theory of (3.8) can be related to the theory of the 
generalised Riccati equation. The function described by (3 .lo) is uniformly asymptotic 
to a solution of (3.8) in the complex x-plane with a neighbourhood of each turning point 
deleted, subject to branch cuts which are introduced to make it single-valued. Thus, w 
in (3.1 1) can be replaced by its asymptotic expansion (3.10) analytically continued along 
r, provided that r does not pass through a zero of F2. 
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x ‘  plane 

branch cut 

Figure 1. The contour r in the x ’  plane. Broken lines lie on the lower sheet of w. 

Termwise integration of the expansion for w yields an expansion for l, which may be 
used in (3.6a) to approximate 4 to arbitrarily large order. 

The classical Liouville-Green (Olver 1974) or WKB (Froman and Froman 1965) 
approximations may be obtained by neglecting all higher-order terms in (3.10) which 
tend to zero as V + 00. Then 

l -  [X(f’-fi)1/2dx’ (3.12) 
Jxo 

and 

4 - (f’ -f@-’/‘[ A1 exp( - V Ix (f’ - fi)l/’ dx’ (f’ - f;)l/’ dd)]  
xo 

(3.13) 

where xo is the relevant zero of the integrand (the caustic). 

3.2. I’ contains no turning points; F’ < 0 for x E If 

The transformation in this case is represented by t = q, G’ = -1 .  Then (3.3) has the 
elementary solution 

(3.14) Q = B1 e-’”q + B~ e’yq 

and it is found that 

(b = (dq/dx)-’/’(B1 e-iv” + BZ eiVq) (3.15a) 

(3.15 b) 

where B1 and Bz are constants. By letting 

U = (dq/dx) (3.16) 

we obtain from (3.15b) 

(3.17) 
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and the solution 
2 2 

U =-w 
follows immediately, with w 2  given by (3.9). Hence 

U - (-F2)1/2 - (-F2)-1/2 [A(--)-(--) 1 d F 2  1 d F 2  ]+o(v-4) 2V2 dx 4 F  dx 4F2  dx 

and 

(3.18) 

(3.19) 

(3.20) 

Branches for U and (-F2)’l2 can be chosen to make them positive for x E I’, and 
similarly for u - ” ~ .  

3.3. I’ contains one turning point at x = xo 

The canonical transformation here is given by t = r, G2 = r. Then (3.3) becomes 

d2@/dr2 - V2r@ = 0 (3.21) 

which has the solution 

CP = C1 Ai( V2l3r)  + C2 Bi( V2j3r) 

where CI and C2 are arbitrary constants, and Ai( a )  and Bi( a )  are the standard Airy 
functions (Abramowitz and Stegun 1965). Equations ( 3 . 4 ~ )  and (3.4b) become 

( 3 . 2 2 ~ )  C$ = (d7/dx)-’”[C1 Ai( V2l3r) + C2 Bi( V2l37)] 

(3.22b) 

To solve (3.223), we introduce a useful device to be known as a counterterm. Let 
T = r ’ + r b / V .  2 

Then (3.223) can be written as 

(3.23) 

(3.24) 

The parameter rb is to be chosen so that T’+ 0 as F2 + 0 ( x  + XO); this requires that 

(3.25) 

Equation (3.24) can now be solved explicitly by iteration; the first few terms are 

(3.26) 
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The constant @) is the leading-order term in .r& and is given by 
’ (0)  = -&F;1/3F2 

F1 = dF2/dx(,=,, 

70 

where 
(3 .27 )  

( 3 . 2 8 ~ )  

F z  = d2F2/dx21,=,,. ( 3 . 2 8 b )  

The conventional Langer approximation is obtained by neglecting all terms in (3 .26 )  
which vanish as V + 00. 

3.4. I’  contains two turning points x = XI,  x = x2, xz > XI 
The canonical transformation in this case is given by t = 6, G 2  = t2 - &, and 6; is some 
constant to be chosen to make 6 and x analytic functions of each other near caustics. 
Then we have 

(3 .29 )  

= (dt/dx)-’/2@ ( 3 . 3 0 ~ )  

d2@/dt2 - V2(t2 - &)@ = 0 

(3 .30  b )  

Equation ( 3 . 3 0 b )  cannot be solved explicitly except in a special case, which allows 
6; + 0. Suppose 

f i = x / V  (3 .3  1 a )  

52O=xtIV (3 .3  1 b )  

where x and x’ are 0(1) as V -+ 00. Then fz -+ 0 as V -+ 03, and the zeros of F2 tend to the 
zeros of f2,  which in practice consist of a double zero at x = 0. Thus the caustics tend to 
coalesce at the origin; xl, x2 + 0. 

Under these circumstances the terms containing 6; and fz in (3 .30b)  are treated as 
counterterms, to give 

x’ is then chosen to make the sum of the last two terms on the right of ( 3 . 3 2 )  vanish as 
x + 0, thus ensuring that 6 is an analytic function of x near the origin. Hence 

Then (3 .306)  can be solved explicitly by iteration, with the result 

and 

( 3 . 3 2 b )  

(3 .33)  

(3 .34 )  

Higher-order terms follow without difficulty. 
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In general, an explicit solution of (3.30b) is difficult to obtain. However, the only 
use to be made of this fully uniform representation for 4 is to normalise the 
representations given in §§ 3.1-3.3 above, and it turns out that for this purpose an 
explicit solution is not required, but merely the assumption of analyticity of the 
functions x(,$) and ,$(x); to is supposed to have been chosen to ensure this. 

Solutions of (3.29) are known, and can be represented in the form (Buchholz 1961, 
Slater 1960) 

@e = cos(iv~)@y - sin($v.rr)@z (3.3%) 

a" = sin(ivv)@y+ cos($v~)@z (3.35 b )  

where the superscripts refer to even and odd solutions, and 

He(s) ds (3 .36~)  

(3.36b) 
1 we-i" 

He(s) ds +- I He(s) ds 2T -1 

.. .meio 

a:=- J ,$Ho(s)e-SZ/2ds 
2Tl me-'- 

(3 .36~)  

1 
,$H"(s) ds+- J ,$H"(s) ds (3.36d) 271. -1 

with 
(3.37u) 

(3.38a) 

(3.37b) 

(3.38 b) 

and (T > 0. The various fractibnal powers of the integrands are defined to be positive on 
the real axis between s =  -1 and s = 1. The two solutions (3.35) are linearly 
independent, as are the pairs (a:, @;) and (@?,@;). The representations are valid as 
long as the integrals converge, which covers 5 + CO but not ,$+ -a; for negative real ,$ 
the symmetry properties are used to calculate @e and @". 

Using the functions @e and @", the most general representation for 4 is 

4 = re+"+ yo+" (3.39) 

4e = (d,$/dx)-'/2@e Cp" = (d,$/dx)-'/'@" (3.40) 

where ye and yo are constants. 

4. Normalisation and connection formulae 

The central problem in this asymptotic theory is the normalisation of the various pairs of 
solutions to a single solution 4, or, in other words, the evaluation of the constants A l ,  
A2, B1, Bz,  C1 and Cz in § 3. Here the group properties referred to at the beginning of 
0 3 are of fundamental significance. The basic principle involved will be illustrated for 
the case of the constants A I  and AZ of 0 3.1. 
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In 0 3, it was shown that 4 has a representation 

4 = (df/dx)-'/'(Al enVL + A2 e"') 
where 

( 4 . 1 ~ )  

(4.lb) 

This representation applies in any region for which F2 > 0. For definiteness, we assume 
this to be the regio x > x2,  where x1 and x2 ( x 2  > x l )  are the real zeros of F2.  Also in 
8 3.3 we considered a representation for (b in terms of a solution Q, of (3.29). Now 
(3.29) is a differential equation of the same type as (3.2); therefore Q, has a 
representation 

( 4 . 2 ~ )  Q, = (d[*/dt)-1/2(AT e-V.r*+AZ e"") 
where 

(4.2b) 

G2 = 5 2  - g-; (4.3) 
in the region t>&,. By substituting the known relations ( 3 . 3 0 ~ )  and (3.306) in (4.2), 
we obtain 

= (df*/dx)-'/'(A? eCVg*+A; eVb*) ( 4 . 4 ~ )  
and 

(4.4b) 

Comparing (4.4) with (4.1), we observe that df/dx and df*/dx satisfy the same 
equation. If conditions could be found which guarantee that f = f * ,  then, comparing 
( 4 . 4 ~ )  with (4.la), it would also be necessary for 

A ~ = A T  ( 4 . 5 ~ )  

A2 = A;. (4.5b) 
Since AT and A$ can be found from integral representations (3.36) for the condition 
that Q, must be single-valued, this would determine A1 and A2 also for the same 
condition on 4, because 5 and x are analytic functions of each other. 

It can be shown that necessary and sufficient conditions for 

f =  f *  
are that 

df df* I,. dx' dx' = I,. dx' dx' 

(4.6) 

(4.7) 

where Cx, is any closed contour passing through x' = x. In addition, if x and 5 are 
connected by the transformation (3.30b) which is analytic in certain regions of the x and 
t planes, then 
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where Cc is the image of Cx, under the mapping x’+ 6’ (x + 6 with x and 6 replaced by X I  

and 6‘ for the purposes of integration) whenever Cx, and Ccf lie entirely within the 
respective domains of analyticity of the mapping. Hence ( 4 . 9 ~ )  and (4.96) also imply 
that 

(4.9) 

That (4.7) is necessary is not difficult to see; sufficiency requires a lengthy analysis of 

Now f and f *  are defined by 
the possible forms that solutions of (4.lb) can take, and will not be pursued here. 

( 4 . 1 0 ~ )  

(4. l o b )  

where are closed contours surrounding the respective branch points of df/dx‘ 
and df’/d[’, passing through x = x ’ ,  6 = 6’ respectively. These contours clearly comply 
with the above conditions, and certainly f = f ” .  

A further quantity of importance can be deduced by allowing Cx, to surround both 
turning points; we call such a contour r0. The corresponding integral on the right-hand 
side of (4.9) can be evaluated exactly by iteration of (4.2b) to any order, and substituting 
the result in (4.9). It turns out that to all orders 

and 

(4.11) 

where 
(3.386) and applying (4.9) results in 

is a closed contour surrounding the points 6’ = *to. Multiplying by - V, using 

(4.12) 

Since the right-hand side of (4.12) is constant, ro may be any closed contour passing 
around the two branch points of the integrand and need not pass through x. The 
integration variable can therefore be changed to x, df/dx replaced by w according to 
(3.7), and (4.12) written 

- V  - 2.rri 6, w dx = U+$. (4.13) 

An identical analysis of the function 7 defined in 9 3.2 leads to the equation 

-8/ -- 27T f., U dx = U+;. (4.14) 

Equations (4.13) and (4.14) may be regarded as global conditions connecting x and 5 to 
each other to ensure that 6 is an analytic function of x within and on ro. They are not 

. These equations will be important in obtaining the independent because w = -U 
eigenvalue equation in P 5 .  

Having established that t = f * ,  it follows that A I  =AT, AZ =A;, and it remains to 
find AT and A; from the integral representations for the confluent hypergeometric 

2 
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functions. This is achieved by allowing 5+00 along the real axis, estimating the 
functions @?, @;, @? and 0; from (3.36) in the asymptotic (53 CO) limit, and comparing 
with the same limit estimated from (4.3) with 5 = 5*.  This calculation is outlined in the 
following. 

4.1. I’ contains no turning points; F2 > 0 for x E I’ 

In addition to the above conditions we assume x > x 2 .  

method for 5+ cy). The results are 
The limiting forms of the functions defined in (3.36) are obtained by Laplace’s 

@; - 0 4 6 ”  exp(-’iVt2) (4.15a) 

@,”2 - D,”~s-~-’ exp(i vt2) (4.15b) 

@? - D?S” exp(-i vt2) (4 .15~)  

- ~ ; 5 - . ” - ’  exp(b vt2) (4.15d) 

where 

(4.16a) 

(4.16b) 

( 4 . 1 6 ~ )  

(4.16d) 

On the other hand, solving (4.2b) approximately (with 5 = 5”). as for (3.6b) leads to 

(d&‘d5)2- 5 2 - ~ ~ - ( 1 / V 2 ) [ ~ ( S 2 - 5 ~ ) - 1 + ~ ~ ~ ( ~ 2 - ~ ~ ) - 2 ] + O ( V - 4 ) .  (4.17) 

The last equation suggests that 

(d5/d5I2 - 5‘ - 56 + 0(K2) (4.18) 

as 6 + CO, and this can be verified by conducting the iterative solution of (4.2b) while 
regarding 5, rather than V, as a large parameter. Taking the square root of (4.18), 
integrating over a contour r as required by (4.11 b) ,  expanding the result for large 6, and 
neglecting terms which vanish as 6 + CO leads to the conclusion that 

(4.19a) 5 - i o  + it2 -it; - 45; ln(25/50) 
as 5+ cy), where Lo is a constant whose asymptotic expansion is 

lo - 1/24 V2&+ O( V-“). (4.19 b)  

Multiplying (4.19a) and (4.19b) by V and using (3.38b) gives 

vc - Vl, + ; VE2 - t( I, + $) - ln(25/50)”+1/2 ( 4 . 1 9 ~ )  

and 

~ 5 ~ - & ( ~ + i ) - ’ + o ( v - ~ ) .  

We now express the various functions in (4.15) in the form 

- A;’(d[/dS)-’/’ eCV‘ 

@; - A?(dl/d5)-1/2 ev‘ 

(4.19d) 

(4.20a) 

(4.20 6) 
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- Ay(dl/dt)-’/2 eCVs (4 .20~)  

a;- A;(dl/dt)-’” ev5 (4.20d) 

which is possible because a?, 0: are recessive solutions of (3.29) as t-, CO, and a;, 
are dominant solutions. (Strictly, (4.20b) and (4.20d) should have a recessive 
component added to them, but such a term would be negligible as ,$+CO, and its 
normalisation could not be determined.) Inserting the limiting form for from (4.19) in 
(4.20) and comparing with (4.15) leads to the following result: 

( 4 . 2 1 ~ )  

A;/A: = (2~)-’”r‘( v + 1)( I, + 4)-v-1/2 exp( Y + 4) exp(2 Vl,) (4.2 1 b)  

( 4 . 2 1 ~ )  

A$/Af = A;’/A:. (4.2 1 d) 

The particular form for the above equations is chosen because it is the ratios (4.21 b)  and 
(4.21d) which appear in the subsequent eigenvalue equation. We note here that if 
to- O(1) as V + co, then Y - Q( V) and the function r(v + 1) in (4.21) has the expansion 

(4.22) r(v+ 1) - ( 2 ~ ) ~ ’ ~ ( ~ + 4 ) ~ + ’ / ~  exp[-(v+$)] exp[-(v+$)-’/24V] 

and using (4.22) and (4.19d) in (4.21b) suggests that 

A”/AF‘ = A$/A;’ = 1 (4.23) 

to all orders. This conjecture will be proved later. 

4.2. I’ contains no turning points; F 2  < 0, x E I’ 

We suppose the closure of the open interval I’ to be the points x1 and x2, the two 
caustics. Now, the function q in (3.20) can be defined by passing the contour r around 
either turning point. This gives rise to two possible definitions for 4 for x1 < x < x2: 

( 4 . 2 4 ~ )  4 = (dq/dx)-’/2[Bll exp(-iVql)+B21 exp(iVql)] 

or 

4 = (dq/dx)-’/’[ BIZ exp(i VTZ) + B22 exp(-i VT~)]  (4.24b) 

where 

q1=4 J udx’  
rl 

(4,25a) 

q 2 = 1 i 2 u d x ’  (4.25b) 

dq/dx = U (4.26) 

and rl and r2 pass from x on the lower sheet to x on the upper sheet around x1 and x2 
respectively (see figure 2). Because ( 4 . 2 4 ~ )  and (4.24b) both represent 4 on the same 
interval, and T~ and q2 differ only by an integration constant, a linear relation exists 
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x' plane 

Figure 2. The contours To, r,, Tz in the x'plane. Broken lines lie on the lower sheet of U. 

between the constants {BIT, B21) and (B12, B22). Let 

(4.27) 

with ro surrounding both turning points. It can be verified that, with the choice of 
principal value for U as in § 3.2, 

771 > o  (4.2 8 a )  

772<0 (4.28 b) 

and therefore 

cy < O .  (4.29) 
Substituting (4.27) in (4.24b) and equating the results to (4.24a) leads to the equations 

BZ1 =BIZ eiVa 

Bll = BZ2 e-iVa 
(4.30a) 

(4.30 b) 

which are the required connection formulae. 

and a0 have similar representations: 
By exactly identical reasoning to that used in § 4.1 above, it can be shown that CP" 

(4.3 1 a )  

(4.31b) 

CP" = (dq/dt)-'/'[B;l exp(-iVql)+ B& exp( iV~, ) ]  

= (d77/d5)-'/'[B?, exp(i Vq2) + Bz2 exp(-iVq2)] 

CP" = (dq/d,f)-1'2[B?1 exp(-i Vql) + B% exp(i V ~ I ) ]  

= (dq/d5)-'/'[BY2 exp(i Vq2) + B;2 exp(-iVq~)] 

and 
( 4 . 3 1 ~ )  

(4.31d) 
where 

(4.32a) 

(4.3 2 b) 
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and l-’T and I? are the images of rl and r2 in (4.25) under the mapping x -+ 6 ;  dq/d6 is a 
solution of 

( 4 . 3 3 ~ )  

@ 2  = 6 2  - 6;. (4.33 b) 

The asymptotic solution of (4.33b) is obtained by iteration: 

( d q / d e ) 2 - ~ ~ - ~ 2 - ( 1 / V 2 ) [ ~ ( & -  6’)>-’-~(&- ~2))-z]+O( T4). (4.33c) 

Also, the relation (4.9) has the form 

(4.34) 

where ro and rEc surround the turning points (branch points) of their respective 
integrands. For the right-hand side 

(4.35) 

as can be proved by direct calculation. Using (4.353, (3.38b) and (3.16), (4.34) may be 
written as 

(4.36) 

Since u2 = - w 2 ,  this equation is completely consistent with (4.13). 
Furthermore, relations analogous to (4.30) exist: 

B;~ = gf2 e - l v a  e-i7/2 (4.37a) 

(4.37c) 

= g 2  e17-7/2 (4.37 b) 
B;l = B y 2  e-ivrr e - - ~ r / 2  

B71 = B22 eivw eiw/2. (4.37d) 

Now, because of the symmetry of the confluent hypergeometric functions 

( 4 . 3 8 ~ )  

(3.38b) 

(4.38c) 

(4.3 8 d )  

In addition, the confluent hypergeometric functions are real when 6 is real; therefore 

(4.39a) 

(4.3%) 

where the bar means complex conjugation. 
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Using (4.38) and (4.39) in (4.37) leads to 

( 4 . 4 0 ~ )  

(4.40b) 

(4 .40~)  

(4.40d) 

where Be and Bo are real constants yet to be determined. With (4.40) in (4.31) we 
obtain 

B; = B e  eivrr/2 eirr/4 

B; = Be e--iu+r/2 e-im/4 

B'; = i ~ o  eiurr/2 i7r/4 

B; =  BO e-iu+r/2 e-irr/4 

e 

( 4 . 4 1 ~ )  

(4 .41~)  

when referred to either turning point. The remaining constants Be and Bo can be 
obtained by comparing the limiting values of Qe and 0" as t+ 0 from (4.41) with the 
corresponding values from the known integral or series representations for these 
functions. This calculation is straightforward, but tedious, and will only be outlined. 

By the symmetry properties of the confluent hypergeometric functions, and (4.27) 
with (4.36), 

(4.42) lim q1 = -1im q2 = f( v -t +)T/ V. 
f -+O t-+O 

Therefore, from (4.41), 

lim Qe = 2B"c 

lim t-'@" = 2B"c-1 V 

P O  

t+O 

where 
c = lim (dq/dt)-'/'. 

5 4  

( 4 . 4 3 ~ )  

(4.43b) 

( 4 . 4 4 ~ )  

The constant c has an asymptotic expansion obtained directly from (4.33~):  

c - [ 1 - 1 / 16 V2& + O( V-')I (4.44b) 

which, using (3.38b), is 

c - [ 1 - &( v + + O( v-"]. (4.44 c) 

Comparing (4.43) with the corresponding estimates from the integral representations 
(3.36), we find 

( 4 . 4 5 ~ )  

(4.45b) 
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4.3. I’ contains one turning point 

The normalisation of the Airy function representations of (3.22) follows similar 
principles to those used previously. There exists a representation for (3 in the form 

CP = (dr*/dt)-’/’[ CT Ai( V2/3r*) + CT Bi( V2/3~*)]  ( 4 . 4 6 ~ )  

(4.463) 

If T and r* are analytic functions of x and 6 respectively in neighbourhoods of the 
respective turning points of F 2  and G 2 ,  then 

r = r *  (4.47a) 

c1= cT c,=cT (4.473) 

and (4.46) becomes 

0 = (dr/dt)-’/’[ C1 Ai( V2l3r) + CZ Bi( V2/3r)] ( 4 . 4 8 ~ )  

(4.483) 

Coefficients C1 and C2 which ensure that (3, and hence 4, is single-valued are obtained 
from the integral representations (3.36) for the single-valued functions @e and (Do. The 
method used for this calculation requires the asymptotic estimation of r as 5 + CO along 
the Stokes’ lines (Olver 1974), and this again uses the group properties of Q 2. 

Since the Airy functions satisfy equation (3.21), which is of the same type as (3.2), 
there must exist relations 

Ai( V2/3r) = El(df/dr)-’/’ eWv5 (4.49a) 

Bi( V2/3r) = E2(df/dr)-1’2 evg +E3(df/dr)-’/’ e-vg (4.493) 

which take account of the recessive and dominant character respectively of these 
functions. The relation between r and f is 

(4.50) 

These relations are general properties of the Airy functions unrelated to any particular 
interpretations of 5 and r. However, when x, f, 6 and r are connected by the group of 
transformations we have considered, then (4.50) is a natural relation within the group. 

(4.5 1) 

The constants El and E2 are found by letting r + CO; then, from (4.50) we obtain 

(df/dr)’- r + O(r-*)  

(4.52) 

Using this estimate and the standard asymptotic forms of the Airy functions, the 
constants El and E2 are found: 

E 1 - 2 r  -1. - 1 / 2 ~ - 1 / 6  ( 4 . 5 3 ~ )  

= r-1/2v-1/6 (4.533) 
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The constant E3 is indeterminate, as it multiplies an exponentially small term which 
disappears in the limit V + CO; this is a characteristic of all asymptotic methods applied 
to this problem where exponentially increasing and decreasing functions appear 
together. 

Now suppose 6 goes to infinity along some curve such that 
5 

Im( (6"- d6') = 0. (4.54) 

There are three such lines (Stokes' lines) emanating from each of the points 6 = *to. 
Along any line only one of the functions 

Ai( V2l37) ~ i ( ~ 2 ~ 1 / 3  v2/3 7) Ai(e-2T~/3 V2I3T) 

is recessive. Along the same line, only one of the functions 

lme -1- H ( s )  ds 

is recessive. (Here the notation is the same as that of (3.36), with H ( s )  in place of H e ( s )  
or H"(s) ,  as required.) Hence it is possible to pair off functions from each set, leaving 
only a multiplying constant to determine in each case. These constants are obtained by 
estimating the integrals for CP?, CP;, etc along the appropriate Stokes' line, and 
comparing with their Airy function representation using (4.52), (4.49a) and the 
standard asymptotic expansions of the Airy functions. For instance, we have already 
established that, for the Stokes' line formed by the real axis, 6 > to, 

me" me" me-'" 

H ( s )  ds H ( s )  ds I, 

= A?(dl/d6)-1'2 e-"' (4.55) 

where A;' is given by (4.21a); on the other hand, there is a representation 

CP? = C y  (d7/d[)-'/' Ai( V2'3~)  (4.56) 

by matching the recessive representation to a;. Using (4.51), (4.49a) and (4.53a), 
(4.56) becomes, as 6 +  CO, 

- . t c ; '~ - l /6~- ' / ' (d~/d l ) - l /2  e-vg (4.57) 

Comparing (4.55) with (4.57) yields the constant Cf in terms of A:, which is known. In 
this way, we find if 

(4.5 8a) 

(4.58 b) 

(De = (dT/dx)-'/'[ C? Ai( V2l37) + Cz Bi( V2/37)] 

CP" = (d7/dx)-'/'[C? Ai( V2l37) + C ;  Bi(V2/3~)] 

that 

c; = c: cos(vv/2) (4.59a) 

C; = -c$ sin(vv/2) (4.593) 

C Y  = C? sin(v~r/2) (4.59c) 

c; = c: COS(VTr/2) (4.59d) 
and 

(4.60a) 

(4.60b) 
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( 4 . 6 0 ~ )  

(4.60d) 

Since these coefficients transfer directly to the representation for #, we find that the 

( 4 . 6 1 ~ )  

(4.61b) 

( 4 . 6 1 ~ )  

By an identical method to that used to derive (4.49) and the associated coefficients it 

( 4 . 6 2 ~ )  

(4.62b) 

most general representation for + in the vicinity of a turning point is 

+ = re+" + yo+" 
+ e  = (dT/dx)-'''[C'; Ai( V 2 / 3 ~ )  + Cz Bi( V 2 / 3 ~ ) ]  

+O = (dT/dx)-'/'[C'; Ai( V2l3T) + C; Bi( V 2 / 3 ~ ) ]  

where ye and yo are arbitrary constants. 

can be shown that 

Ai( V2/") = T - l / z  V-'/6(dq/dT)-1/2 CoS(r/4 - Vq)  

Bi( V"'r) = x-l" V - ' / 6 ( d ~ / d ~ ) - ' / 2  sin(.rr/4- Vq) 

when r < 0, where 

(4.63) 

(4.64) 

(note here that T I  is simply a replacement for T for integration purposes, and is not the 
same as r 1  in (3.23)) and r is a contour surrounding 7'-6) in the positive direction 
passing through T I  = r. 

The principal value of dq/dT is positive for real T ,  r < 0. 
Using (4.62) and the normalisation (4.58)-(4.60) for the functions CP' and @", the 

normalisation for the oscillatory representation (the constants B';, BeZ, B? and BZ) can 
be recalculated; it then turns out that 

A" 1 - - B e  A"' 1 - -Bo ( 4 . 6 5 ~ )  

A;/A? = 1 A ~ / A ?  = 1. (4.65b) 

Although these relations are not obvious by inspection of the relevant equations 
(4.21) and (4.43, they are verifiable by direct calculation asymptotically to finite orders. 
This is an extremely tedious process beyond the leading order. 

5. Quantisation 

Having obtained normalised representations for the (unique) single-valued solution 4, 
it remains to apply the boundary conditions and so determine the eigenvalues of the 
differential equation. This calculation is conducted by a straightforward procedure, 
using different representations for + for different configurations of caustics and 
boundaries. It is convenient to assume that the profile function f is symmetric 
( f ( - x )  = - f ( x ) )  as this simplifies the analysis, but it is not essential to restrict the 
problem in this way. For symmetric profiles, +e and +o form independent 
eigenfunctions. This means that the pair (Al ,  A2) in (4.1) can be taken to be either 
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(A?,AZ) or (A?,A;) to correspond to even or odd solutions, since 4 shares the 
symmetry of CP for symmetric profiles. 

5.1. limv+, f: = constant # 0 or 1 

This condition describes the physical configuration of separated caustics not close to a 
boundary. In this case, near a boundary 4 is described by the exponential functions of 
9 3.1. The boundary condition (2.9) at x = 1 is applied to the representation (4.1) with 
the coefficients defined by (4.21). With some rearrangement the resulting equations 
can be put in the form 

for c # ~ ~  and 

for 4 O ,  where 

(5,la) 

(5.lb) 

evaluated at x = 1,  with dl/dx a solution of (3.6b), and l evaluated at x = 1. Both 
(5.la) and ( 5 . l b )  can be inverted in the form 

v = q + 2 6/57. (5.3) 

where q is a nonnegative integer and 

0 =tan-'[-(--) 1 W ' - v  e -2v5 ] x =; I .  
2 W ' + V  

Adding to both sides of (5.3) and using (4.13) gives 

1 20 -"$ w d x = q + - + -  
277i ro 2 7 7  

with 

w = dl/dx. 

(5.4) 

(5.5) 

(5.6) 

Equation ( 5 . 5 )  is the required eigenvalue equation. It is exact in the sense that both 
sides can be computed to arbitrary order in V-' if a value for fg is given. 

5.2. limv4, fg = 1 

This condition describes a configuration where a caustic is close to a boundary. A 
similar calculation to 9 5.1 above can be carried out using the Airy function 
representations (4.61) for 4" and +O. The result is similar to ( 5 . 5 ) :  

1 20 -__IL f w dx = q +-+- 
27ri To 2 7 7  (5.7) 
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where q is a non-negative integer and 

-l(Ai‘(V2’3~)+ VP2l3 W“ Ai( V2/’r)) 
Bi’( V2/’r) + V-2/3W‘f Bi( V2/’7) 

8 = tan 

(5.9) 

and r is a solution of (3.22b) evaluated, along with its derivatives, at x = 1. The prime 
on the Airy functions denotes differentiation with respect to argument. 

5.3. limV.+03 f?) = o 
This condition corresponds to degenerate caustics at the origin. In this case, boundary 
conditions are applied to the full uniform solution ( 3 . 3 0 ~ )  with @ = @e or CP” for even or 
odd solutions respectively. Using (3.35), applying the boundary condition (2.9) and 
rearranging results in 

1 28 -“p w d x = q + - + -  
27pi 2 . r r  

where q is a non-negative integer, 

and 

(5.10) 

(5.11u) 

(5.11 b )  

(5.12) 

evaluated at x = 1. The prime on the CP functions denotes differentiation with respect to 
6, and all x-dependent terms in (5.1 1) are evaluated at x = 1. The function 6 is a solution 
of (3.30b), and because of the smallness of fg the approximate solution (3.33) may be 
used. 

6. Conclusion 

This paper has described the asymptotic solution of a differential equation with 
boundary conditions at the ends of a finite interval which occurs in the theory of planar 
inhomogeneous waveguides, using a transformation on the independent variable to 
map the dependent variable onto a known solution of a canonical differential equation. 
This method is, in principle, capable of generating approximations to all asymptotic 
orders in the large parameter V, and we have considered a variety of representations 
valid over various parts of the domain of the differential equation, including a fully 
uniform representation valid over the whole of the domain. 

No attempt has been made to solve the eigenvalue equations arising in this paper, 
for reasons of length; this problem is to be considered in the following paper. 
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Appendix 

Here it is desired to make the group properties referred to in 0 3 more apparent. This 
Appendix is not intended to be rigorous, merely descriptive. 

Consider the set of all differential equations of the form 

d2@/dt2 - V2G2@ = 0 (AI) 
where G is a member of a suitable class of functions; in our case, we take G 2  to be an 
analytic function of t. Let X denote the equation (Al).  The transformation 

transforms from 

XI: d2@1/dt: - V2G:@I = 0 

to 

X2: d2@2/dt:- V2G:@2 = 0. 

The transformation X 1  + X 2  may be written symbolically as 

X2 = T21X1. 645) 
Consider now an arbitrary finite set of functions { Gi : i s N} .  This set generates ( N  - 1)2 
transformations between different elements of {Xi: i G N } ,  and the set of these 
transformations is called To. The union of To with the identity I (no transformation at 
all) is called the transformation set, T :  

T = T ~ u I  

T o = { T i j :  i s N , j s N , i # j } .  

A multiplication operation (.) is defined on T as follows. If 

Xi  = T..X. 11 I xj = ?;kXk (A7a) 
then 

and, by definition, 

Tij . q k  = Tik. 

It will now be proved that Tik E T. We have 
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Multiplying (A9b) by (dtj/dti)' and using (A9a) on the right leads to 

and it can be verified that the second and third terms on the right of (A10) can be 
simplified to give 

Furthermore, 

( A l l a )  

( A l l b )  

Equations ( A l l )  define the transformation Tck E T. Therefore T:k = Tlk, and (A8) may 
be written 

TL1 Tlk  = Tlk. (A121 

Therefore the set To is closed under multiplication. 
The identity obviously belongs to T, and clearly 

(TI] . I )X l  = ( I .  T,,)X, = T,,X,. (A131 

Therefore the set T is closed under multiplication and possesses an identity. 
By means very similar to the proof of closure, it can be shown that, if 

TzlX, = Xt (A14a) 

defines an inverse for every element of T which is also an element of T. 

the property of closure: 
Finally, the associativity of multiplication on T is demonstrated by means similar to 

T I .  ( T k .  T k i )  = (TLl. Tk) . Tki. (A 16) 

These properties define a group, the transformation group. 
Imposing analyticity requirements on the functions t ,( t,) greatly restricts the 

admissible functions {GI}. 
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The transformation set used in this paper is constructed using the following sets of 

tl = x G: = F~ (A17a) 

f2 = l G;= 1 (A17b) 

t3 = .q G:=-1 (A17c) 

t4 = r G:=r (A17d) 

t5  = t G: = t2 - 6;. (A17e) 

variables: 
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